18-bit Buffers / Drivers with 3-state Outputs

HITACHI

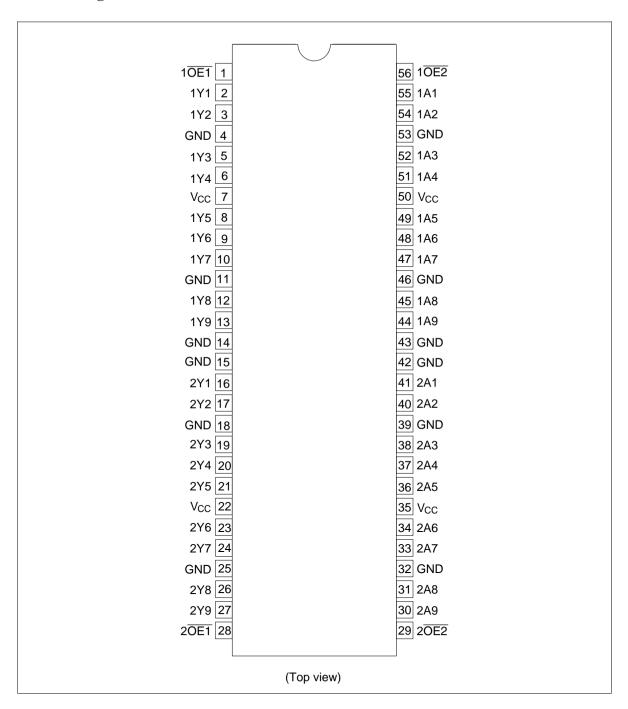
ADE-205-187A (Z) 2nd. Edition August 1997

Description

The HD74ALVCH162825 can be used as two 9-bit buffers or one 18-bit buffer. It provides true data. The 3-state control gate is a 2-input AND gate with active low inputs so that if either output enable ($\overline{OE1}$ or $\overline{OE2}$) input is high, all nine affected outputs are in the high impedance state. Active bus hold circuitry is provided to hold unused or floating data inputs at a valid logic level. All outputs, which are designed to sink up to 12 mA, include 26 Ω resistors to reduce overshoot and undershoot.

Features

- $V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$
- Typical V_{OL} ground bounce < 0.8 V (@ V_{CC} = 3.3 V, Ta = 25°C)
- Typical V_{OH} undershoot > 2.0 V (@ V_{CC} = 3.3 V, Ta = 25°C)
- High output current $\pm 12 \text{ mA}$ (@V_{CC} = 3.0 V)
- Bus hold on data inputs eliminates the need for external pullup / pulldown resistors
- All outputs have equivalent 26 Ω series resistors, so no external resistors are required.


Function Table

Inputs		Output Y		
OE1	OE2	Α		
L	L	L	L	
L	L	Н	Н	
Н	Χ	Χ	Z	
X	Н	X	Z	

H : High level
L : Low level
X : Immaterial
Z : High impedance

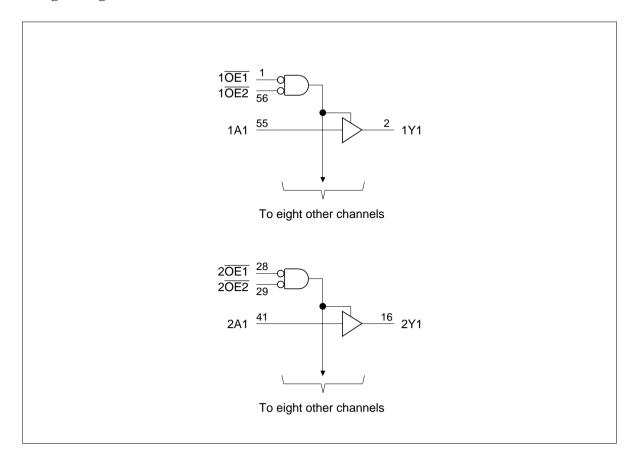
Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{cc}	-0.5 to 4.6	V	
Input voltage *1	V _I	-0.5 to 4.6	V	
Output voltage *1,2	Vo	-0.5 to V_{cc} +0.5	V	
Input clamp current	I _{IK}	-50	mA	V ₁ < 0
Output clamp current	I _{OK}	±50	mA	$V_{\rm o}$ < 0 or $V_{\rm o}$ > $V_{\rm cc}$
Continuous output current	Io	±50	mA	$V_{\rm o}$ = 0 to $V_{\rm cc}$
V _{cc} , GND current / pin	I _{CC} or I _{GND}	±100	mA	
Maximum power dissipation at Ta = 55°C (in still air) ^{'3}	P _T	1	W	TSSOP
Storage temperature	Tstg	-65 to 150	°C	

Notes:

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.


- 1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. This value is limited to 4.6 V maximum.
- The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

Recommended Operating Conditions

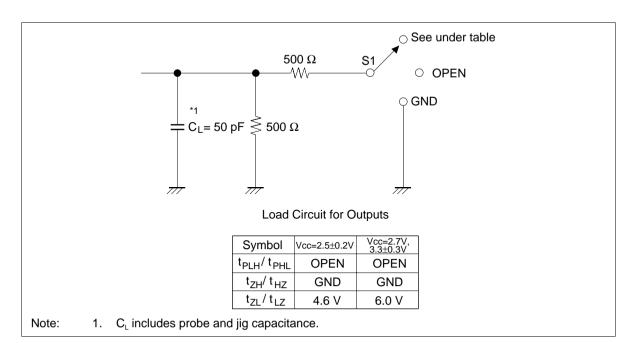
Item	Symbol	Min	Max	Unit	Conditions
Supply voltage	V _{cc}	2.3	3.6	V	
Input voltage	V_{I}	0	V_{cc}	V	
Output voltage	Vo	0	V _{cc}	V	
High level output current	I _{OH}	_	-6	mA	V _{CC} = 2.3 V
		_	-8		$V_{CC} = 2.7 \text{ V}$
		_	-12		$V_{CC} = 3.0 \text{ V}$
Low level output current	I _{OL}	_	6	mA	V _{CC} = 2.3 V
		_	8		$V_{CC} = 2.7 \text{ V}$
		_	12		$V_{CC} = 3.0 \text{ V}$
Input transition rise or fall rate	Δt / Δν	0	10	ns / V	
Operating temperature	Та	-40	85	°C	

Note: Unused control inputs must be held high or low to prevent them from floating.

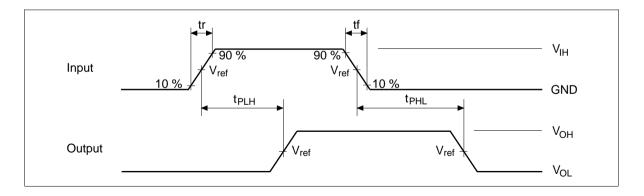
Logic Diagram

Electrical Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

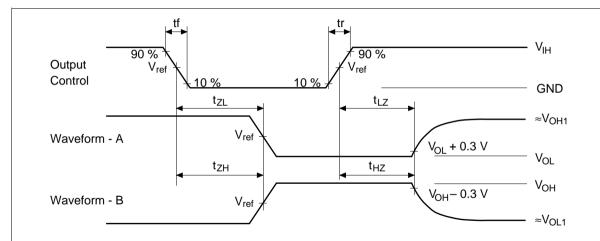
Item	Symbol	V _{cc} (V) *1	Min	Max	Unit	Test Conditions
Input voltage	V _{IH}	2.3 to 2.7	1.7	_	V	
		2.7 to 3.6	2.0	_	-	
	V _{IL}	2.3 to 2.7	_	0.7	=	
		2.7 to 3.6	_	0.8	=	
Output voltage	V_{OH}	Min to Max	V _{cc} -0.2	_	V	$I_{OH} = -100 \mu A$
		2.3	1.9	_	=	$I_{OH} = -4 \text{ mA}, V_{IH} = 1.7 \text{ V}$
		2.3	1.7	_	=	$I_{OH} = -6 \text{ mA}, V_{IH} = 1.7 \text{ V}$
		3.0	2.4	_	=	$I_{OH} = -6 \text{ mA}, V_{IH} = 2.0 \text{ V}$
		2.7	2.0	_	=	$I_{OH} = -8 \text{ mA}, V_{IH} = 2.0 \text{ V}$
		3.0	2.0	_	=	$I_{OH} = -12 \text{ mA}, V_{IH} = 2.0 \text{ V}$
	V _{OL}	Min to Max	_	0.2	=	I _{OL} = 100 μA
		2.3	_	0.4	=	$I_{OL} = 4 \text{ mA}, V_{IL} = 0.7 \text{ V}$
		2.3	_	0.55	=	$I_{OL} = 6 \text{ mA}, V_{IL} = 0.7 \text{ V}$
		3.0	_	0.55	=	$I_{OL} = 6 \text{ mA}, V_{IL} = 0.8 \text{ V}$
		2.7	_	0.6	=	$I_{OL} = 8 \text{ mA}, V_{IL} = 0.8 \text{ V}$
		3.0	_	0.8	=	$I_{OL} = 12 \text{ mA}, V_{IL} = 0.8 \text{ V}$
nput current	I _{IN}	3.6	_	±5	μΑ	$V_{IN} = V_{CC}$ or GND
	I _{IN (hold)}	2.3	45	_	=	$V_{IN} = 0.7 \text{ V}$
		2.3	-45	_	=	$V_{IN} = 1.7 \text{ V}$
		3.0	75	_	=	$V_{IN} = 0.8 \text{ V}$
		3.0	-75	_	=	V _{IN} = 2.0 V
		3.6	_	±500	=	$V_{IN} = 0 \text{ to } 3.6 \text{ V}$
Off state output current *2	I _{oz}	3.6	_	±10	μΑ	$V_{OUT} = V_{CC}$ or GND
Quiescent supply current	I _{cc}	3.6	_	40	μΑ	$V_{IN} = V_{CC}$ or GND
	ΔI_{CC}	3.0 to 3.6	_	750	μΑ	V_{IN} = one input at $(V_{CC}-0.6)$ V ,
						other inputs at $\rm V_{\rm CC}$ or GND


Notes: 1. For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

2. For I/O ports, the parameter I_{oz} includes the input leakage current.

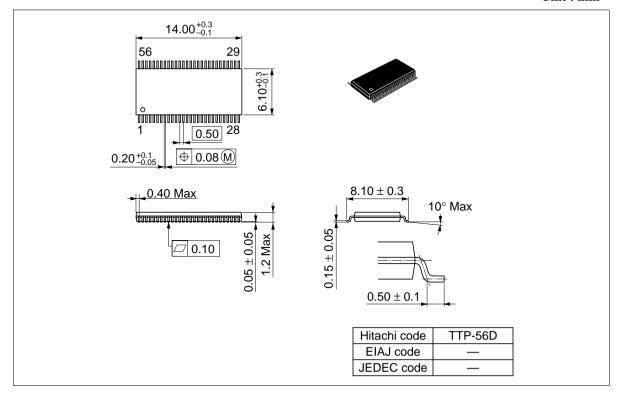

Switching Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	FROM (Input)	TO (Output)
Propagation delay time	t _{PLH}	2.5±0.2	1.0	_	5.0	ns	Α	Υ
	$t_{\scriptscriptstylePHL}$	2.7	_	_	4.4			
		3.3±0.3	1.0	_	3.8	_		
Output enable time	t _{zH}	2.5±0.2	1.0	_	6.8	ns	ŌĒ	Υ
	\mathbf{t}_{ZL}	2.7	_	_	6.2			
		3.3±0.3	1.0	_	5.1			
Output disable time	t _{HZ}	2.5±0.2	1.9	_	6.1	ns	ŌĒ	Υ
	\mathbf{t}_{LZ}	2.7	_	_	5.2			
		3.3±0.3	1.3	_	4.7			
Input capacitance	C _{IN}	3.3	_	3.5	_	pF	Control in	puts
		3.3	_	6.0	_		Data inpu	ts
Output capacitance	C _o	3.3	_	7.0	_	pF	Outputs	


Test Circuit

Waveforms - 1

Waveforms – 2


TEST	Vcc=2.5±0.2V	Vcc=2.7V, 3.3±0.3V
V _{IH}	2.3 V	2.7 V
V_{ref}	1.2 V	1.5 V
V_{OH1}	2.3 V	3.0 V
V _{OL1}	GND	GND

Notes:

- 1. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Zo = 50 Ω , tr \leq 2.5 ns, tf \leq 2.5 ns.
- 2. Waveform—A is for an output with internal conditions such that the output is low except when disabled by the output control.
- 3. Waveform–B is for an output with internal conditions such that the output is high except when disabled by the output control.
- 4. The output are measured one at a time with one transition per measurement.

Package Dimensions

Unit: mm

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

HTACHI

Hitachi, Ltd.

Semiconductor & Integrated Circuits.

Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109

http:semiconductor.hitachi.com/

NorthAmerica URL Europe Asia (Singapore)

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm Asia (Taiwan) Asia (HongKong) http://www.hitachi.com.hk/eng/bo/grp3/index.htm

http://www.hitachi.co.jp/Sicd/indx.htm Japan

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe GmbH Electronic components Group Dornacher Stra§e 3 D-85622 Feldkirchen, Munich Germany Tel: <49> (89) 9 9180-0

Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group.

Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom

Tel: <44> (1628) 585000 Fax: <44> (1628) 778322 Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218

Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1999. All rights reserved. Printed in Japan.